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LETTER TO THE EDITOR 

Equivalence between tunnelling times based on (a) 
absorption probabilities, (b) the Larmor clock, and (c) 
scattering projectors 

J G Muga, S Brouard and R Sala 
Departamento de Fisica Fundamental y Experimental. Univemidad de La laguna, 
Tenerife. Spain 

Received 21 July 1992 

Abstract. The assumption of analyticity at the transmission and reflection probability 
amplitudes as functions of a mmplex potential is shown to be justified. As a consequence 
the reflection and transmission timm based on absorption prababiities are shown to be 
equal to the colresponding times derived from the local Lamor precession in the plane 
perpendicular to the magnetic field. An additional new interpretation of these times is 
provided by means of a more general scattering theory projector formalism. The relalian 
10 the phase times is discussed. 

Considerable attention is being paid to the theoretical and experimental determination 
of quantum interaction times, especially in the context of one-dimensional scattering, 
because of the possible technological implications in resonant tunnelling devices. 
While there is general agreement on the meaning of the dwell time [l], which for the 
stationary scattering wave + takes the form 

To(Z1r "2) = 4-1(+lD(zl> zz)l+) (1) 

where F, is the incident flux, and D(z , ,  z2) is the projector selecting the coordinate 
space interval [z,, 4 

the dwell time decomposition into transmission and reflection times is controversial, 
and a diversity of approaches claim to hold the right or best answer (see the recent 
reviews [2-4]). Clearly it is important to discern the differences and similarities 
between them. Our effort here is in this direction. 

Biittiker [3, 51, and Huang and Wang [6] have shown that the partial times based 
on absorption probabilities, T; and T;, are equal to the local Larmor times, T , ~  and 
T~~ [i, 3, 7). (The definition of the local Larmor times requires a gedanken clock 
experiment consisting in an incident beam fully spin-polarized in the y direction 
impinging on the barrier from the left in the z direction in the presence of an 
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infinitesimal uniform magnetic field B = B O ( z  - zI)O(z2 - z ) i  covering the 
interval [z,, 4.) However, their result relies on the assumption that the transmission 
and reflection probability amplitudes are complex analytic functions of the complex 
potential as made explicit in (61. In this letter it is first shown that this assumption 
is entirely justified, thus confirming the results of Biittiker, and Huang and Wang. In 
addition, we provide a scattering projector formalism, sketched in (SI, that includes 
all Larmor times (and consequently the absorption-based times) as particular cases. 
The relation to phase delay times is also indicated. We restrict ourselves to stationary 
scattering. 

The first step is the evaluation of the transmission and reflection coefficients in 
terms of the transition matrix. Assume that a complex potential A V  acts between 
z1 and z2, with AV, 3 R e ( A V )  and AV, E Im ( A V )  as real positive numbers 
independent of 5. The full potential is the sum of U(=) = AV@(z-  zl)O(z2-  z), 
and the physical interaction V,(z) 

V(z)  = vu(.) + U ( z ) .  (3) 
By physical we mean that Vu( z) is the actual potential of our system. The complex 
potential is here regarded as an auxiliary theoretical entity. Eventually we will be 
interested in the limit where this complex potential vanishes. 

The Lippmann-Schwinger equation for V ( z )  is not formally affected by the 
presence of the imaginary term. Thus the wave function 

(2 I P(+)) = (x I p) + r-O lim(zlG,(E, + ie)T(EP + ie)lp) (4) 

( e  and p will always be taken as positive) is a solution of the Schrodinger equation 
having energy E, = p z / ( 2 m )  and outgoing boundary conditions for the scattered 
wave, with incident plane wave (z I p) = h-'/'exp(ipz/fi) [9]; T ( r )  = V n ( z )  is the 
energy-parametrized transition operator; n(z) = 1 + C, ( z )T(x )  is a parametrized 
Moller operator (see [lo] for a full account on different parametrizations), and 
GU(z) = ( z  - IfU)-l is the resolvent of the kinetic energy operator HW 

We are particularly interested in the behaviour at asymptotic positions 

(2 I P ( + L . - w  - h-'/'lexp(ipz/fi) + R, exp(-ipz/fi)] 

(I I p ( + ) ) = + -  - f~-'/~T,exp(ipz/fi) (5) 

where Tp and R, are the complex transmission and reflection coefficients (probability 
amplitudes) respectively. Explicit expressions for them in terms of matrix elements 
of the transition operator are found by considering, using contour integration in the 
complex momentum plane, the asymptotic behaviour of the Green's function in (4), 
and comparing with (9, 

T, = 1 - (2min/p)(plTlp)  

R, = - ( ~ ~ ~ ~ / P ) ( - P J T I P ) .  (7) 

(6) 

See [ll] for an alternative derivation. The coefficients Tp and R, depend on the 
matrix elements of T on the energy shell; in other words, the energy of the ket 
and bra momenta is equal to the real part of the argument of T ( r ) .  (Do not miss 
the transition operator T, the transmission coefficient T, and the transition matrix 
Tpp,  = limc-u(plT(Ep, + ic)lp').) 
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Suppose that V depends on a parameter a. Then the derivative of the on-shell 
matrix elemenu of T with respect to (I is given by [I21 

dT,.,/da = (p'(-)IdV/dulp(+)) (8) 

where Ip(-)) = lim,,,C2(EP - ie)lp). Now take (I = AV. The analyticity of Tprp, 
and therefore of R, and Tp, with respea to the parameter A V  is thus determined 
by the  analyticity of V with respect to AV. But the derivative dV/d(AV) exists 
for all AV, and equals the projector operator selecting the coordinate space interval 
[X,> 121' 

dV/d(AV) = D ( x , , x 2 ) .  (9) 

This implies the validity of the Cauchy-Riemman conditions required in [6] to equate 
the local Larmor clock times, T~~ and rzR, and the absorption based times, T+ and 
T i .  

In particular, 

and, using (6), one obtains the relations 

When substituting them into the local Larmor transmission time associated with spin 
rotation in the x - y plane [7] 

is recovered. Following a similar calculation it is also found that r& = T = ~ .  

with spin precession in the y - z plane, 
The previous Larmor transmission time, equation (12), and the one associated 
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will now be obtained by means of a completely different approach based on resolving 
the operator D in (1) with the aid of the complementay scattering projector operators 
P and Q = 1 - P, 

The projector P selects the part of a square integrable wave 4 that will be transmitted 
(will have positive momentum) in the future, P4. Since P and Q commute with 
the Hamiltonian, the components P 4  and Q+ evolve independently of each other. 
Three useful resolutions are: 

(16) D = P D P +  P D Q +  QDP+ QDQ 

D = P D + Q D  

D = D P D +  D Q D .  

By inserting these expressions into (1) different decompositions of the dwell times 
are obtained. Equation (17) will provide complex times since P D  and Q D  are not 
Hermitian. In fact this decomposition gives the complex times associated with the 
Larmor clock. 

Let us note before that, even though, as stated, the projectors P , Q  originate 
in wave packet scattering, they have a physical interpretation in the stationaly 
case. Similarly, the abstract Moller operator S I *  = I i q +  exp(iffit) exp(-iH"t) 
is only meaningful for wave packets, but, when properfy parametrized (e.g. in 
lim,-,R(E, f it)lp)), it may act on plane waves giving continuum eigenstates of 
the full Hamiltonian H. These are not square integrable states, but are widely 
recognized as useful entities, not only mathematically, forming a basis, but because 
of the physical content. The states Ip(+)) describe the collision due to a constant 
flux Fl of incident monoenergetic articles giving a scattered wave with outgoing 
boundary conditions. The states Jpp-)) imply the opposite order of events, having 
ingoing boundary conditions for the scattered wave, and an outgoing plane wave with 
flux Fo equal to F,. Let us examine the effect of P on \p (+) ) .  Using the definition 
(15), the relation 

S,,, E (p'(-)\p(+)) = 6(p - p') - 2irr6( E, - E,,)T,,,  (19) 

between the S- and T-matrix elements, and (6), we obtain PIP(+)) = T,Ip(-)). 
One may then normalize these projections in the same way as the states ) p ( * ) ) ,  

IPpr ) )  5 )T,)-'PJp(+)). With this normalization, the decomposition of the dwell 
time based on (16) can be written as 

(20) 2 P D P  2 Q D Q  
TD = lTpl 'T + lRpI 'R + Tint 

where 'TDP E Fil(PpL+)IDIPpjif)) and .RQDQ = F;'(Qp'N+IDIQ&'), with 
IQpF))  IR,I-'Q)p(+)). The interference term T ~ ~ ,  _= 2F;'Re(p(+)JPDQJp(+)) 
is a quantum mechanical feature without classical counterpart. It is interesting to note 
that the PDP and Q D Q  terms are real, positive, and interpretable as transmission 
and reflection dwell rimes. 
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Using the resolution (17), instead of (16), to decompose the dwell time, complex 
times can be defined as 

T,’” ( P ( ~ ) ~ P D ~ ~ ( + ) ) / F , I T , I ~  rCD s (p(t)lQDlp(t))/F,IR,12 (21) 

to arrive at the expression 

(22) 2 P D  2 Q D  
70 = I T P I  TT +IRpI 7, . 

We shall examine now the real and imaginary parts of rTD 
CD 

Re(rTPD) = Re [&ITp12]-1/ U dp‘(p(t)lp’(-))(p’(-)IDlp(t))) 

Using (19), (6) and (ll), one exactly recovers rzT, equation (12), by performing the 
integral in (23) with the aid of the delta functions. 

Following the same steps as before with the imaginary part of r f D ,  it is found 
that Im( r,’”) = -rzT so, in summaly, rTD = rzT - irzT. for the transmission, and 
similarly, for the reflection, r?” = rzzR - irzR. These complex times are equal to 
the ones considered by Leavens and Aers [A, o r  by Sokolovski and Baskin [13], and 
their moduli are the Biittiker-Landauer (real) times of 11, 31. 

Notice that the real parts of the matrix elements of P D  = P D P  .+ PDQ or 
Q D  = Q D P  + QDQ implied by the decomposition (17) are sums of a (partial) 
dwell time and an interference contribution. From this perspective, since the sign of 
the interference contribution can be negative, negative partial times are possible [6], 

Next the relation to the phase delay times is discussed. In the following we 
consider a real perturbation A V  = A V , .  As stated by Huang and Wang [6], if A V  
covers the whole space, then 

a&(p) /aE  = -a&,/aAVl,,=, (U(z) = AV Vz). (24) 

Since the phase delay time h O & ( p ) / a E  is given formally by the same expression 
as rzT, equation (12), but with opposite sign, and derivatives with respect to E instead 
of AV, the above equality is proved by showing that aTp/8E = -aT,/aAV(,,=,, 
and this is indeed the case, since p = J2m( E - AV). In physical terms, raising the 
level of the potential uniformly through the whole space keeping a constant energy 
for the particle is completely equivalent to lowering the energy of the particle keeping 
the same potential. The net effect of these two operations is to decrease the kinetic 
energy of the incident particle by the same amount, and the transmission coefficient 
can only depend on this, since the potential barrier profile remains the same. It is 
tempting to claim that (24) implies that the phase delay time is equal to the Larmor 
clock time rZT for a magnetic field covering the whole space. In this regard we would 
like to point out a seeming paradox. In the previous discussion, r,, was actually a 
function of the interval izl, 4, as can be explicitly seen in (23). When making this 
interval larger and larger, the spin rotation is expected to increase too, and eventually 
tends to infinity. (Formally, by performing the integral in (23), and taking D + 1 
we obtain S-matrix elements having infinite delta functions.) On the contrary, the 
phase delay time is in general a finite quantity. How can these two facts and (24) be 
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reconciled? Physically, we are considering different processes. When enlarging the 
interval [zl, z2] we are still within the amhit of scattering theory. The potential is 
restricted to a limited region of space (irrespective of its size) and vanishes in the 
asymptotic regions. The Larmor clock is related to the passage through this limited 
region. In contrast, when A V  covers the whole space, no asymptotic regions exist 
with zero potential, and scattering theory results, in particular (S), cannot be applied. 
One can of course shift the zero of potential energy to A V  by redefining the new 
asymptotic Hamiltonian as = &(X). 
However, within this framework it is the asymptotic Hamiltonian and not the potential 
that depends on the parameter A V  with the consequence that, again, equation (8) 
does not hold. Mathematically this reflects a singular behaviour of the derivative 
-a&(p)/L3AVlA,=, when z1 = -03 and x2 = 03. Thking the limit of these two 
positions to 703, respectively, does not give the same result as having them equal 
to 'fco from the beginning. If one insists on regarding the phase delay times as 
particular cases of the Larmor clock times, it is a t  least worthwhile to recognize this 
singularity. 

In summary, connections between previously defined tunnelling times in the 
stationary regime have been provided. A novel approach based on scattering projector 
operators has also been described. This method includes the complex, Larmor and 
absorption-based times as particular cases; it is easily generalizable to timedependent 
wave packets, and makes no reference to non-standard interpretations of quantum 
mechanics. The physical content of the various partial times is given by the implied 
projector operators. In this work the emphasis has been on relating various defined 
times. In future work the full potential of the method will be exploited hy examining 
the alternative times arising for the different decompositions (16), (17) and (18). This 
program has been partially carried out for wave packets in the time-dependent case 

= H ,  + A V  and the new potential as 

~ 4 1 .  

We would like to thank M Biittiker and R Landauer for comments on the original 
manuscript. 
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